
Part V
The Part of Tens

	 Enjoy an additional Part of Tens chapter from Java Programming for Android
Developers For Dummies online at www.dummies.com/extras/java
programmingforandroiddevelopers.

http://www.dummies.com/extras/javaprogrammingforandroiddevelopers

In this part . . .
	 ✓	 Preventing mistakes
	 ✓	 Mining the web for more information

Chapter 15

Ten Ways to Avoid Mistakes
In This Chapter
▶	Checking your capitalization and value comparisons
▶	Watching out for fall-through
▶	Putting methods, listeners, and constructors where they belong
▶	Using static and nonstatic references
▶	Avoiding other heinous errors

“T
he only people who never make mistakes are the people who never
do anything at all.” One of my college professors said that. I don’t

remember the professor’s name, so I can’t give him proper credit. I guess
that’s my mistake.

Putting Capital Letters
Where They Belong

Java is a case-sensitive language, so you really have to mind your Ps and
Qs — along with every other letter of the alphabet. Here are some concepts
to keep in mind as you create Java programs:

	 ✓	Java’s keywords are all completely lowercase. For instance, in a Java if
statement, the word if can’t be If or IF.

	 ✓	When you use names from the Java Application Programming Interface
(API), the case of the names has to match what appears in the API.

	 ✓	You also need to make sure that the names you make up yourself are
capitalized the same way throughout the entire program. If you declare
a myAccount variable, you can’t refer to it as MyAccount, myaccount,
or Myaccount. If you capitalize the variable name two different ways,
Java thinks you’re referring to two completely different variables.

For more info on Java’s case-sensitivity, see Chapter 5.

406 Part V: The Part of Tens

Breaking Out of a switch Statement
If you don’t break out of a switch statement, you get fall-through. For
instance, if the value of roll is 7, the following code prints all three words —
win, continue, and lose:

switch (roll) {
case 7:
 System.out.println(“win”);
case 10:
 System.out.println(“continue”);
case 12:
 System.out.println(“lose”);
}

For the full story, see Chapter 8.

Comparing Values with
a Double Equal Sign

When you compare two values with one another, you use a double equal
sign. The line

if (inputNumber == randomNumber)

is correct, but the line

if (inputNumber = randomNumber)

is not correct. For a full report, see Chapter 6.

Adding Listeners to Handle Events
You want to know when the user clicks a widget, when an animation ends, or
when something else happens, so you create listeners:

407 Chapter 15: Ten Ways to Avoid Mistakes

public class MainActivity extends Activity
 implements OnClickListener, AnimationListener {
 ...
 public void onClick(View view) {
 ...
 }
 public void onAnimationEnd(Animation animation) {
 ...
 }

When you create listeners, you must remember to set the listeners:

 ImageView widget = new ImageView(this);
 widget.setOnClickListener(this);
 ...
 AlphaAnimation animation =
 new AlphaAnimation(0.0F, 1.0F);
 animation.setAnimationListener(this);
 ...

If you forget the call to setOnClickListener, nothing happens when you
click the widget. Clicking the widget harder a second time doesn’t help.

For the rundown on listeners, see Chapter 11.

Defining the Required Constructors
When you define a constructor with parameters, as in

public Temperature(double number)

Java no longer creates a default parameterless constructor for you. In other
words, you can no longer call

Temperature roomTemp = new Temperature();

unless you explicitly define your own parameterless Temperature construc-
tor. For all the gory details on constructors, see Chapter 9.

408 Part V: The Part of Tens

Fixing Nonstatic References
If you try to compile the following code, you get an error message:

class WillNotWork {
 String greeting = “Hello”;

 public static void main(String args[]) {
 System.out.println(greeting);
 }
}

You get an error message because main is static, but greeting isn’t static.
For the complete guide to finding and fixing this problem, see Chapter 9.

Staying within Bounds in an Array
When you declare an array with ten components, the components have
indexes 0 through 9. In other words, if you declare

int guests[] = new int[10];

you can refer to the guests array’s components by writing guests[0],
guests[1], and so on, all the way up to guests[9]. You can’t write
guests[10], because the guests array has no component with index 10.

For the latest gossip on arrays, see Chapter 12.

Anticipating Null Pointers
This book’s examples aren’t prone to throwing the NullPointer
Exception, but in real-life Java programming, you see that exception all the
time. A NullPointerException comes about when you call a method on
an expression that doesn’t have a “legitimate” value. Here’s a cheap example:

public class ThrowNullPointerException {

 public static void main(String[] args) {
 String myString = null;
 display(myString);

409 Chapter 15: Ten Ways to Avoid Mistakes

 }

 static void display(String aString) {
 if (!aString.contains(“confidential”)) {
 System.out.println(aString);
 }
 }
}

The display method prints a string of characters only if that string doesn’t
contain the word confidential. The problem is that the myString variable
(and thus the aString parameter) doesn’t refer to a string of any kind — not
even to the empty string (“”).

When the computer reaches the call to aString.contains, the computer
looks for a contains method belonging to null. But null is nothing. The
null value has no methods. So you get a big NullPointerException, and
the program comes crashing down around you.

To avoid this kind of calamity, think twice about any method call in your
code. If the expression before the dot can possibly be null, add exception-
handling code to your program:

try {
 if (!aString.contains(“confidential”)) {
 System.out.println(aString);
 }
} catch (NullPointerException e) {
 System.out.println(“The string is null.”);
}

For the story on handling exceptions, see Chapter 13.

Using Permissions
Some apps require explicit permissions. For example, the app in Chapter 13
talks to Twitter’s servers over the Internet. This doesn’t work unless you add
a <uses-permission> element to the app’s AndroidManifest.xml file:

<uses-permission android:name=
 “android.permission.INTERNET”/>

410 Part V: The Part of Tens

If you forget to add the <uses-permission> element to your Android
Manifest.xml file, the app can’t communicate with Twitter’s servers. The
app fails without displaying a useful error message. Too bad!

The Activity Not Found
If you create a second activity for your app, you must add a new <activity>
element in the app’s AndroidManifest.xml file. For example, the Android
app in Chapter 12 has two activities: MainActivity and MyListActivity.
Eclipse automatically creates an <activity android:name=”.Main
Activity” element, but you have to type your own element for the
MyListActivity:

<activity android:name=”.MyListActivity”>
 <intent-filter>
 <data android:scheme=”checked” />
 </intent-filter>
</activity>

If you don’t add this <activity> element, Android can’t find the
MyListActivity class, even though the MyListAcitivity.java
file is in the app’s Eclipse project directory. Your app crashes with an
ActivityNotFoundException.

And that makes all the difference.

